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Abstract. We have calculated the constant volume lattice specific heat and the elastic 
constants of sodium and potassium using local, first-principles pseudopotentials. This kind 
of pseudopotential has been useful in the calculation of properties of aluminium and lithium 
and in the calculation of the phonon limited resistivity of sodium and potassium. It is obtained 
from the induced electron density around an ion in the corresponding electron gas. From 
each pseudopotentialwe obtained the interionicpotential, the phonons (which are calculated 
by the harmonic approximation) and finally the lattice specific heat and the elastic constants 
for sodium and potassium. The results are in good agreement with experimental results. 

1. Introduction 

In order to calculate the lattice contribution to the specific heat and elastic constants of 
sodium and potassium, we started by calculating the interionic potential for each one of 
these metals, from first principles. 

It is clear, at present, that a pseudopotential determined in an empirical way cannot 
be always considered as weak [l] ,  and therefore its use in the calculation of the interionic 
potential and from this, the phonons to calculate the specific heat, elastic constants and 
other properties of metals, is not justified. 

For simple metals the interionic potential can be constructed from first principles 
using pseudopotential theory. We constructed a first principles pseudopotential fol- 
lowing a method proposed by Manninen et af [2] who had followed the spirit of the work 
of Rasolt and Taylor [3] and of Dagens et a1 [4], with some differences. 

In the approach of Rasolt and Taylor [3] the displaced electronic density around an 
impurity in an electron gas is calculated by non-linear screening theory. Then a non- 
local pseudopotential is defined in order to reproduce, as closely as possible, the non- 
linear displaced electronic density by linear response theory, except in a region close to 
the ion. In this way, the non-linear effects are partially included. 

In the method we have used, the starting point is also the displaced electronic density 
around an impurity in an electron gas, which has an equilibrium density equal to that of 
the corresponding metal. This calculation is also made by non-linear screening theory, 
considering the screening of the ion within the model of the nucleus embedded in a 
jellium vacancy [2], The pseudodensity is obtained by smoothing the non-linear density 
in a small region close to the nucleus. The smoothing of the electronic density is done in 
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order to remove all the ‘wiggles’ near the nucleus. This modelled density is taken as the 
pseudodensity. The unscreened pseudopotential form factor is given in terms of the 
Fourier transform of the pseudodensity and the dielectric function. With this definition 
of the pseudopotential, some of the non-linear screening effects are also included in the 
pair potential obtained from the pseudopotential. 

In previous work we employed the same kind of pseudopotential we use in this work, 
We successfully used the pseudopotential with the model of the nucleus embedded in a 
jelliumvacancy, in the calculation of the lattice specific heat of lithium [ 5 ] ,  and aluminium 
[6], and in determining the pressure dependence of the lattice specific heat of lithium 
[7], and aluminium [7], and also in the calculation of the pressure dependence of the 
elastic constants of aluminium and lithium [8]. More recently we also explored, with 
good results, the application of the pseudopotential in the calculation of the phonon 
limited resistivity of aluminium [9], and of sodium and potassium [lo]. 

In this work we construct the local, first principles pseudopotentials for sodium and 
potassium in order to calculate the lattice contribution to the specific heat and the elastic 
constants for each of these metals. 

In the second section we describe briefly the method used to construct the pseudo- 
potential from the displaced electron density. We also exhibit the dielectric function we 
have used in this work, which satisfies by construction, the compressibility theorem 
which is important in connection with the interionic potential [2, 111. 

In the third section we describe the calculation of phonons and elastic constants. 
Section 4 is for the results and conclusions. 

We have used atomic units (i.e. the magnitude of the electron charge = electron 
mass = h = 1). The energy is given in double Rydbergs. 

2. The pseudopotentials and interionic potentials 

We started by calculating the displaced electron densities around a nucleus in an electron 
gas for sodium (Na) and potassium (K) respectively. This was done using the density 
functional formalism [12, 131, and the model of the nucleus embedded in a jellium 
vacancy. Taking into account that in the pseudopotential formulation the pseudodensity 
must not contain wiggles near the ion, these wiggles in the calculated density had to be 
removed, as we explain below. 

Frompseudopotential theory and linear response theory [ 141 , the interionicpotential 
is given by: 

where r is the separation between the two ions, Z is the charge of the metal ion, E ( q ) ,  is 
the dielectric response function of the electron gas and 6n(q)  is the Fourier transform 
of the induced charge pseudodensity. 

For the model of the nucleus embedded in a jellium vacancy, the induced electronic 
density is calculated by taking the difference [2] 

states 

where n(r) is calculated with the total charge density corresponding to a nucleus located 
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at the centre of a vacancy in jellium, and n,(r) is the electron density around a jellium 
vacancy alone. Charge neutrality of the metal is a necessary condition. The bound states 
are represented by %(r).  

We calculated 6n(q) ,  the Fourier transform of the displaced electron pseudodensity, 
taking the Fourier transform of the density given by (2) after smoothing. In this smooth- 
ing, the conditions that the electronic charge is conserved and that 6n(r) ,  and 
(a /ar) (sn(r>)  are continuous, are imposed [2] .  It is convenient to mention that in the 
pseudopotential formulation, the pseudodensity must not contain wiggles near the ion, 
and the induced density calculated from density functional theory contains those wiggles 
in that region due to the orthogonalisation of conduction states to the core orbitals. 

The unscreened pseudopotential form factor, u ( q ) ,  is related to 6n(q)  by 

Equation (3) is used to obtain an effective local pseudopotential, which in linear 
response will give the exact induced displaced electronic density outside the region of 
smoothing. In this way some of the non-linear screening effects are included in the pair 
potential calculated from this pseudopotential. 

The dielectric function we used satisfies by construction, the compressibility theorem 
which is important in connection with the interionic potential [2, 111. It is given by [2, 
151: 

4 q )  = 1 + (4n/q2)G(d 
where 

and Go(q) is the usual Lindhard polarisability, kTF is the Thomas-Fermi screening 
constant, and L is the ratio 

L = (aP/dG)/(aEF/ars). 

,u(rs) = Wr,)  + Pxdrs) 

In equation (6) ,u is the chemical potential, E F  is the Fermi energy and 

where ,uxc(rs) is the exchange-correlation contribution to the chemical potential. 
Using the expression of Gunnarson and Lundqvist [ 161, for exchange-correlation 

(which is the one we used in the calculation of the induced electronic density), the 
corresponding value of L is 

L = 1 - (4/9z4)'l3 r,(l + 0.6213 T, / (T ,  + 11.4)). 

Notice that the value of u(q  = 0) is -(2/3)EF0, where EFO is the Fermi energy of the 
free electron gas. The corresponding Friedel sum is the valence of the metal ion. 

3. Phonons, elastic constants and specific heat 

With the induced charge pseudodensity and the dielectric function already given, we 
used (1) to calculate the interionic potential. 

From the interionic potential we calculated the phonons and associated force con- 
stants, using the harmonic approximation. 
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From the tensor force model and using the notation of [17], the force matrix with 
elements cDij is defined as the force on the origin atom in the i direction when atom S 
moves one unit distance in thejdirection. This force matrix is symmetric and it is denoted 
by 

The point S is one of a set of points according to the symmetry of the lattice. This set 
of points is denoted by S, where S = 1 , 2 , 3 ,  etc, corresponding to each shell of neigh- 
bours. The force matrices of the other members of the set consist of rearrangements of 
the same set of force constants. 

The elastic constants, Cll,  Cd4, C12 are given by [17] 

where a is the lattice constant, ns is the number of lattice points for the neighbouring 
shell S;  hf corresponds to three non-negative integers such that h l  > h2 > h3 and the 
coordinates of a point in shell S are h1a/2, h2a/2, h3a/2. For FCC t = 1 and for BCC 

The relations between the force constants of the tensor force model and the axially 
z = 1/2. 

symmetric model are [18]: 

as = CB(S) + (h:/h2)k1(S) 

ai = cB(S) f (h$/h2)k1(S) 

Ps = (h2h3/h2>k1(S> 

P i  = (hlh2/h2>kl(S> 
= CB(S) + (h;/h*)kl(S) PI = (h3hl/h2>kl(S) (6) 

where h2 = h: + hi + h t ,  and k l ( S )  and CB(S) are the two force constants of the axially 
symmetric model for the Sth shell of neighbours [18]. 

We can easily relate the force constants kl(S) and CB(S) to the derivatives of the 
interionic potential to give 

k l ( S )  = [d2V(r)/dr2 - (l/r) dV(r)/dr](s) 

CdS) = W )  d w / d r I ( s ) .  

(7) 

(8) 

and 

In this way, once we know the interionicpotential V ( r ) ,  we can find k , ( S )  and CB(S) 
and using equations (5) and (6) we can calculate the elastic constants. 

To calculate the phonon frequency distribution, F(v), from the force constants 
obtained in the phonon dispersion curve, we followed the method of Gilat and Rau- 
benheimer [19]. This method consists of solving the secular equations associated with 
the dynamical matrix only at a relatively small number of points in the irreducible first 
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Brillouin zone. Then, by means of linear extrapolation, the other phonon eigen- 
frequencies are extracted from within small cubes, each centred at one point. These 
cubes can be arranged to fill the entire irreducible first Brillouin zone and thus can yield 
the complete frequency distribution of the crystal. 

Having the phonon spectrum, F(v), the specific heat is calculated numerically by the 
integral 

phv  F ( v )  CO=-- 
sinh(phv/2) 

dT - k ,  j:m d v  (TI (9) 

where ( E )  is the average of the internal energy, T is the temperature and v, is the 
maximum phonon frequency. 

For high temperatures (for example, larger than the corresponding Debye tem- 
peratures) the anharmonic effects become more important, as happens with the specific 
heat [20-221. 

We believe that our calculations will be sufficient to explore the applicability of our 
pseudopotential in the prediction of the lattice specific heat and elastic constants of 
sodium and potassium from first principles. 

4. Results and conclusions 

We started our calculations by obtaining the induced densities according to equation (2) 
and using the density functional formalism. For this is necessary to calculate the displaced 
electronic densities around a nucleus embedded in a jellium vacancy and also the 
displaced electronic density around a vacancy alone. We made the calculations for 
nuclei of sodium and potassium respectively, and jelliums corresponding to sodium and 
potassium. After this, a smoothing of the densities near the ions is done in order to 
construct the displaced electronic pseudodensities. 

The following step was to calculate the Fourier transform of the pseudodensities. 
This was achieved using the asymptotic form for 6n(r)  given by: 

6n(r) = B cos(2kpr + cp)/r3, 

where the constants B and cp were obtained using the last points in our calculation of 
6n(r). This asymptotic form was taken for distances larger than R,,, = 15.04 a,, where 
a, is the Bohr radius (ao = 0.529 A). The accuracy of the Fourier transform was tested 
taking the inverse Fourier transform of 6n(q) and the resulting difference with respect 
to the original values of &(r) was less than 0.1% for each point. 

With 6n(q) and the dielectric function defined in section 3 we could evaluate the 
interionic potential using equation 1. In figures 1 and 2 we show the resulting interionic 
potentials for sodium and potassium respectively. From these interionic potentials we 
calculated the derivatives to be used in (7) and (8) in order to calculate the elastic 
constants for each rxaterial. Also, from the interionic potential we obtained the phonons 
and the force constants by the harmonic approximation. The resulting phonons for 
sodium and potassium are shown in figures 3 and 4 respectively. We can see from these 
figures a good agreement with the experimental results [23,24] and from this we should 
expect a good prediction for the elastic constants and the lattice specific heats, as in fact 
happened. Using the elastic constants and the method of Gilat and Raubenheimer [19], 
we obtained the phonon spectra to be employed to calculate numerically the lattice 
contribution to the specific heat. 
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Figure 1. The calculated interionic potential for 
sodium. In this figure we are using rr = 3.93 a,, 
where a,, is the Bohr radius. 
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Figure 3. Phonons for sodium. Results of this 
work: full curve; experimental results [23,24]: 0, 
X .  
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Figure 2. The calculated interionic potential for 
potassium. In this case we are using rs = 4.86 a,, 
where a, is the Bohr radius 
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Figure 4. Phonons for potassium. Results of this 
work: full curve; experimental results [23,24]; 0, 
X .  

The results for the lattice specific heats for sodium and potassium are shown in figures 
5 and 6 respectively, where we also show a comparison with the experimental results 
[20-221. We consider a range of temperatures in both cases up to a maximum slightly 
above the Debye temperatures. From these figures we can see a good agreement between 
our first principles calculations and the experimental results. It is known that for sodium 
there exists a martensitic transformation below 35 K,  therefore we are not considering 
temperatures below this for sodium. The range of temperatures we are considering for 
potassium begins at 0 K. We can see from these figures a good agreement between our 
prediction and the experimental results. 
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Figure 5. Constant volume lattice specific 
heat of sodium. Prediction of this work: 
broken curve. Experimental results 1 2 s  , 1 1 1 221: fullcurve. The Debye temperature for 
sodium is 156 K. 
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Figure 6. Constant volume lattice specific 
heat of potassium. Prediction of this work: 

~~ broken curve. Experimental results [20- 
0 025 050 075 10 I 2 5  221: full curve. The Debye temperature of 

potassium is 90.6 K.  

Table 1. Elastic constants of sodium. as functions of temperature, predicted with our first 
principles calculation and experimental results from [23]. Sodium undergoes a martensitic 
transformation below 35 K to an FCC structure. The Debye temperature for sodium is 156 K.  

T c44 C44 Cl I Cl I c12 c12 

(K) (calc.) (exp.) (calc.) (exp.) (calc.) (exp.) 

50 0.564 0.619 0.646 0.617 0.442 0.469 
90 0.558 0.586 0.619 0.603 0.411 0.458 

140 0.552 0.550 0.587 0.583 0.374 0.443 
200 0.542 0.501 0.560 0.560 0.338 0.428 

It is convenient to mention here that in order to calculate the lattice specific heat 
and elastic constants for each temperature, it was necessary to evaluate the interionic 
potential and the phonon frequencies for the corresponding lattice parameter at each 
temperature. 

Our calculated elastic constants, for different temperatures are shown in tables 1 and 
2, for sodium and potassium, respectively, where we also show experimental results 
from [25 ,26] .  We can see that there is good agreement between our predictions and the 
experiments. 

From above it is clear that our pseudopotential is appropriate for the calculation of 
the elastic constants and the lattice specific heat, as functions of the temperature, for 
sodium and potassium and that a good agreement with experimental results can be seen 
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Tabiie 2. Elastic constants of potassium, as functions of temperature, predicted with our 
first principles calculation and experimental results from [24], The Debye temperature for 
potassium is 90.6 K. 

T C44 c44 Cl I c, I c1z ClZ 
(K) (calc.) (exp.) (calc.) (exp.) (calc.) (exp.) 

4 0.263 0.284 0.400 0.427 0.358 0.354 
50 0.259 0.268 0.388 0.417 0.356 0.347 
90 0.247 0.255 0.386 0.410 0.335 0.342 

130 0.224 0.241 0.381 0.402 0.342 0.336 
200 0.205 0.218 0.363 0.389 0.327 0.327 

for the range of temperatures for which our calculations are expected to be applicable. 
This is without any phenomenological adjustments. 

Finally, it is convenient to mention that the only previous articles where a first 
principles pseudopotential is used to calculate successfully phonons for sodium and 
potassium are [3] (for sodium) and [4] (for potassium). In these references, a non-local, 
first principles pseudopotential is used, but there were no reports on elastic constants 
nor on the lattice specific heat for sodium or potassium in them. 
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